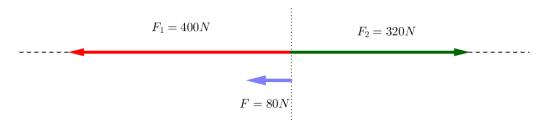
Esercizi

5.1 Le forze

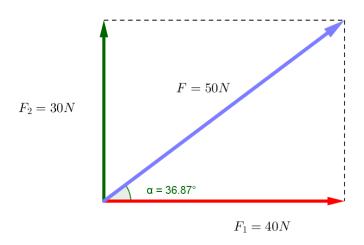
- 1 Due ragazzi, Sergio e Gianluca, giocano al tiro alla fune. Sergio esercita una forza di 400 N, Gianluca di 320 N.
 - a) Rappresenta la situazione mediante due vettori.
 - b) Disegna il vettore somma.

Se Sergio e Gianluca giocano al tiro alla fune: le due forze applicate hanno la stessa direzione e verso opposto:



Il vettore risultante F avrà, la direzione della fune, il verso del vettore maggiore (ovvero F1) e il modulo Dato dalla differenza dei due moduli : $F = F_1 - F_2 = 400 - 320 = 80N$.

2 Due forze, una pari a 40 N e l'altra pari a 30 N, agiscono perpendicolarmente fra loro su un punto materiale. Traccia un disegno che illustri la situazione e calcola il valore del modulo della somma delle due forze.
[50 N]



Dato che il triangolo è rettangolo (applicando il teorema di Pitagora) il modulo del vettore sarà:

$$F = \sqrt{F_1^2 + F_2^2} = \sqrt{30^2 + 40^2} = \sqrt{2500} = 50N$$

E l'angolo:
$$\alpha = \tan^{-1} \left(\frac{3}{4} \right) = 36,87^{\circ}$$

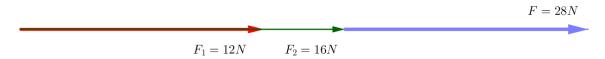
3 Due forze $\vec{F_1}$ ed $\vec{F_2}$ di intensità rispettivamente 12 N e 16 N sono applicate a uno stesso punto.

Determina il modulo della forza risultante nell'ipotesi che le due forze abbiano:

- a) stessa direzione e stesso verso;
- b) stessa direzione e verso opposto;
- c) direzione perpendicolare.

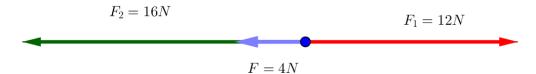
[a) 28 N; b) 4 N; c) 20 N]

$$F_1 = 12N$$
 e $F_2 = 16N$

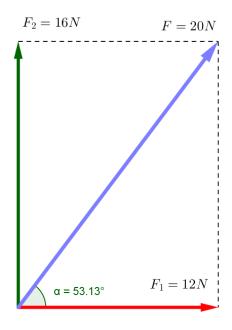


Il vettore risultante F avrà, la direzione delle due forze, il verso delle due forze e il modulo

Dato dalla somma dei due moduli : $F = F_1 + F_2 = 12 + 16 = 28N$.



Il vettore risultante F avrà, la direzione della fune, il verso del vettore maggiore (ovvero F2) e il modulo Dato dalla differenza dei due moduli : $F=F_2-F_1=16-12=4N$.

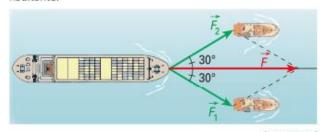


Dato che il triangolo è rettangolo (applicando il teorema di Pitagora) il modulo del vettore sarà:

$$F = \sqrt{F_1^2 + F_2^2} = \sqrt{12^2 + 16^2} = \sqrt{400} = 20N$$

E l'angolo:
$$\alpha = \tan^{-1} \left(\frac{16}{12} \right) = 53,13^{\circ}$$

4 Due rimorchiatori trainano un'imbarcazione esercitando ciascuno una forza di 12 000 N. Sapendo che l'angolo formato dalle due corde è di 60°, determina l'intensità della forza risultante.



[20800 N]

$$F_{1x} = F_1 \cos 60 = 12000 \cos 60 = 10392N$$

$$F_{1y} = F_1 \sin 30 = 12000 \sin 30 = 6000N$$

$$F_{2x} = F_2 \cos 60 = 12000 \cos 60 = 10392N$$

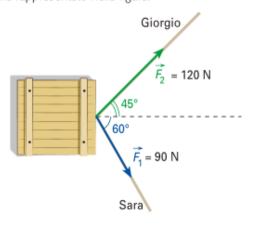
$$F_{2y} = F_2 \sin 30 = 12000 \sin 30 = 6000N$$

$$\vec{F}_1 = (F_{1x}; F_{1y}) = (10392; -6000)$$

$$\vec{F}_2 = (F_{2x}; F_{2y}) = (10392; 6000)$$

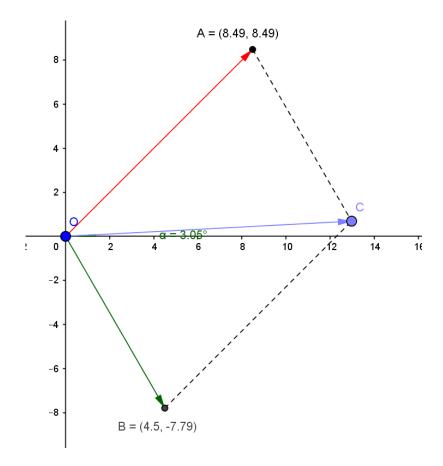
$$\vec{F} = (F_{1x} + F_{2x}; F_{1y} + F_{2y}) = (10392 + 10392; -6000 + 6000) = (20784; 0)$$

5 Giorgio e Sara stanno tirando insieme una cassa secondo lo schema rappresentato nella figura.



Determina l'intensità della forza risultante.

[130 N]



$$F_{1x} = F_1 \cos 60 = 90 \cos 60 = 45N$$

$$F_{1y} = F_1 \sin 30 = 90 \sin 60 = 77.94 N$$

$$F_{2x} = F_2 \cos 60 = 120 \cos 45 = 84.85N$$

$$F_{2y} = F_2 \sin 30 = 120 \sin 45 = 84.85N$$

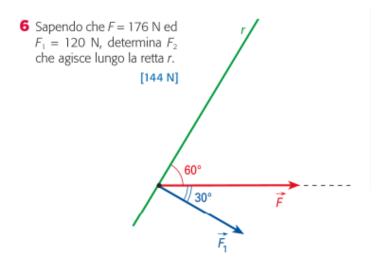
$$\vec{F}_1 = (F_{1x}; F_{1y}) = (45; -77.94)$$

$$\vec{F}_2 = (F_{2x}; F_{2y}) = (84.85; 84.85)$$

$$\vec{F} = (F_{1x} + F_{2x}; F_{1y} + F_{2y}) = (129.85; 6.91)$$

Quindi il modulo di F :
$$F = \sqrt{F_x^2 + F_y^2} = 130$$

E l'angolo:
$$\alpha = \tan^{-1} \left(\frac{6.91}{129.85} \right) = 3^{\circ}$$



Dalla figura osservo due forze F1 e F che agiscono sullo stesso punto di applicazione. Non dice nulla su F e F1, quindi dobbiamo intenderle come indipendenti.

MI chiede la forza F2 che agisce lungo la retta r.

F1 essendo perpendicolare a r non da contributo sul r:

$$F_{2x} = F_1 \cos 90 = 120 \cos 90 = 0N$$

$$F_{2y} = F_1 \sin 60 = 120 \sin 90 = 120 N$$

Scomponendo il vettore F lungo la retta r ho:

$$F_{2x} = F \cos 60 = 176 \cos 60 = 88N$$

$$F_{2y} = F \sin 60 = 176 \sin 60 = 152.42N$$

E quindi la risposta è 88 N.

Osserviamo che se intendiamo F2 tale che

$$\vec{F} = \vec{F}_1 + \vec{F}_2 \quad \text{segue} \quad \vec{F}_2 = \vec{F} - \vec{F}_1$$

$$F_{1x} = F_1 \cos 30 = 120 \cos 30 = 103.92N$$

$$F_{1y} = F_1 \sin 30 = 120 \sin 30 = 60N$$

Quindi F1 ha componenti: $\vec{F}_1 = (103.92; -60)$

Il vettore risultante F ha componenti: $\vec{F} = (176;0)$

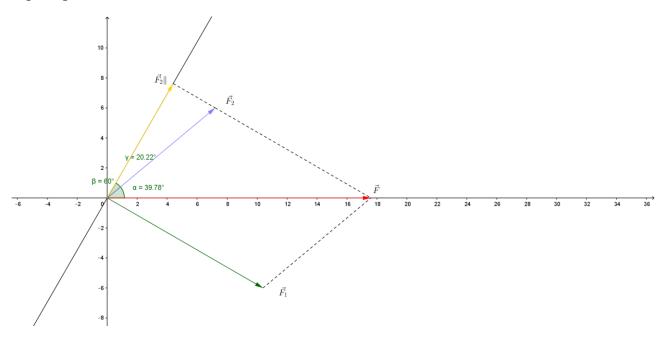
Allora
$$\vec{F}_2 = \vec{F} - \vec{F}_1 = (F - F_{1x}; F - F_{1y}) = (72.08; 60)$$

Quindi il modulo di F2 :
$$F_2 = \sqrt{{F_{2x}}^2 + {F_{2y}}^2} = \sqrt{72.08^2 + 60^2} = 93.8$$

E l'angolo:
$$\alpha = \tan^{-1} \left(\frac{60}{72.08} \right) = 39,77^{\circ}$$

Se consideriamo la componente del vettore F2 sulla retta r abbiamo che

$$F_2 \parallel = F_2 \cos(60^\circ - 39.77^\circ) = 93.8 \cos(20.23^\circ) = 88N$$



- **8** Una molla si allunga secondo la relazione $F = 500 \cdot \Delta s$.
 - a) Utilizzando la relazione, completa la seguente tabella:

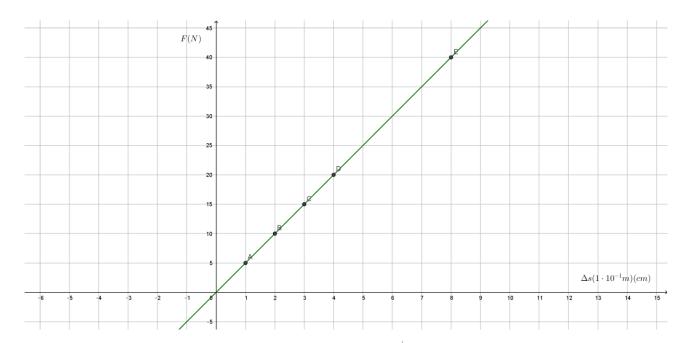
F(N)	5			20	40
Δs (m)	0,01	0,02	0,03		

b) Rappresenta la relazione in un sistema di riferimento cartesiano, riportando sull'asse x gli allungamenti della molla e sull'asse y le forze applicate.

 $F = 500\Delta x$ da cui le relazioni inverse: $\Delta x = \frac{F}{500} =$

F	5	=500(0,02)=10N	=500(0,03)=15N	20	40
Δs	0,01	0,02	0,03	$=\frac{20}{500}=0,04$	$=\frac{40}{500}=0,08$

Rappresentiamo il grafico in piano cartesiano dove sull'asse x, usiamo l'unità in centimetri.



9 Considera la seguente tabella:

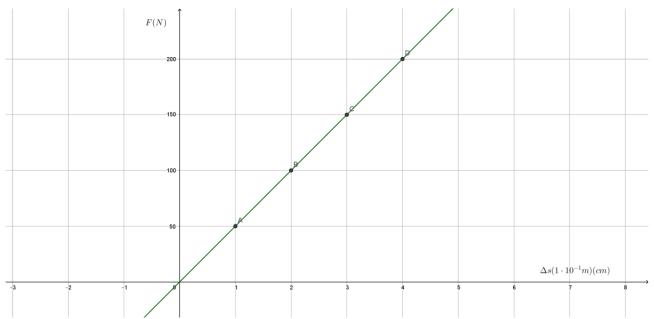
forza applicata y (N)	50	100	150	200
allungamento x (m)	0,1			

- a) Completa la tabella nell'ipotesi che forze e allungamenti soddisfino la legge di Hooke.
- b) Rappresenta la relazione in un sistema di riferimento cartesiano, riportando sull'asse x gli allungamenti e sull'asse y le forze applicate.
- c) Individua il valore numerico della costante elastica.
- d) Scrivi tutte le proprietà di cui godono forze applicate e allungamenti in quanto grandezze direttamente proporzionali.

$$k = \frac{F}{\Delta x} = \frac{50}{0.01} = 5000 N / m$$
 da cui $F = 5000 \Delta x$ e $\Delta x = \frac{F}{5000} = \frac{1}{5000} = \frac{1}{50000} = \frac{1}{5000} = \frac{1}{50000} = \frac{1}{50000} = \frac{1}{5000} = \frac{1}{5000} = \frac{1}{5000} = \frac{1}{50000} = \frac{1}{50000} = \frac{1$

F	50	100	150	200
Δs	0,01	$\Delta x = \frac{100}{5000} = 0,02$	$\Delta x = \frac{150}{5000} = 0.03$	$\Delta x = \frac{200}{5000} = 0,04$

Rappresento la forza in grafico cartesiano dove sull'asse x pongo l'unità in cm e



La relazione è direttamente proporzionale:

- Il rapporto tra forza e allungamento è costante
- Il grafico della forza su di un grafico F-s è rappresentato da una retta che passa per l'origine
- Al raddoppiare dell'allungamento raddoppia la forza e viceversa
- Il coefficiente elastico k rappresenta il tipo di molla, e nel grafico la pendenza della retta

5.2 La legge di Hooke

- **7** Una molla si allunga secondo la relazione $F = 100 \cdot \Delta s$.
 - a) Utilizzando la relazione data, completa la seguente tabella.

F(N)	100			
∆s (dm)	1	2	3	4

b) Qual è l'unità di misura della costante elastica?

 $F = 100 \cdot \Delta s \implies$

F (N)	$=100 \cdot 1 = 100$	$=100 \cdot 2 = 200$	$=100 \cdot 3 = 300$	$=100 \cdot 3 = 300$
Δs (dm)	1	2	3	4

$$k = \frac{F}{\Delta s} = 100 \frac{N}{dm} = 10 \frac{N}{cm} = 1000 \frac{N}{m}$$

10 Una molla, disposta verticalmente, è caratterizzata da una costante elastica di 80 N/m. Determina quale forza verticale si deve applicare per ottenere un allungamento di 20 cm.

Per lo svolgimento dell'esercizio, completa il percorso guidato, inserendo gli elementi mancanti dove compaiono i puntini.

- 1 I dati sono:
- 2 Le unità di misura sono coerenti con quelle del SI?
- 3 In caso di risposta negativa, esegui le equivalenze necessa-
- **4** La formula da usare, dato che ti viene richiesta la forza, è:
- 5 Sostituisci nella formula i dati, trovando perciò:

[16 N]

$$\Delta s = 20cm = 0, 2m$$

$$k = \frac{F}{\Delta s} = 80 \frac{N}{m} \implies F = 80 \cdot \Delta s = 80(0, 2) = 16 \text{ N}$$

11 Una molla, disposta verticalmente, è caratterizzata da una costante elastica di 120 N/m e una lunghezza a riposo di 45 cm. Dopo che le si applica una forza verticale, la sua lunghezza totale diventa di 60 cm. Calcola l'intensità della forza applicata.

SUGGERIMENTO Ricordati di trasformare, se necessario, le unità di misura delle grandezze in quelle del SI. Non confondere, poi, lunghezza con allungamento...

[18 N]

$$k = \frac{F}{\Delta s} = 120 \frac{N}{m}$$

$$\Delta s = s_1 - s_0 = 60 - 45 = 15cm = 0.15m$$

$$F = 120 \cdot \Delta s = 120(0,15) = 18N$$

12 Una molla ha una costante elastica pari a 25 N/m. La sua lunghezza a riposo è di 18 cm. Se la lunghezza finale della molla è di 22,5 cm, qual è la forza che la sollecita?

[1,125 N]

$$k = \frac{F}{\Delta s} = 25 \frac{N}{m}$$

$$\Delta s = s_1 - s_0 = 22.5 - 18 = 4,5cm = 0,045m$$

$$F = 25 \cdot \Delta s = 25(0,045) = 1,125N$$